Clinical and Genetic Spectrums of

Paediatric Cardiomyopathy in Hong Kong

SHI ZJ¹, CHAU FTJ², KWOK SY¹, YEUNG KS², FUNG LFJ², YUNG TC¹, CHUNG HYB², LUN KS¹

¹Department of Paediatric Cardiology, Queen Mary Hospital ² Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong

Paediatric Cardiomyopathy

CISION 99

Objectives

- To analyze the clinical and genetic characteristics of cardiomyopathy of Hong Kong children
- To identify the genetype-phenotype correlations in paediatric patients with cardiomyopathy

Objectives

Methods

<18 years old Primary cardiomyopathies (HCM, DCM, RCM, LVNC, ARVC) Follow up in QMH

paediatric cardiology clinic

Retrospective review of clinical records

Analyze existing genetic results (WES, gene panels or targeted testing) by genetic analyst Perform WES for untested patients In accordance to **ACMG guidelines**¹ Cascade screening when indicated

*WES = whole exome sequencing

Results

Demographic and clinical characteristics

Clinical Characteristics	No of patients (N= 44)		
Demographic features			
Age at latest follow-up (years)	9.8 ± 4.2		
Gender (male/female)	29 (65.9%)/ 15 (34.1%)		
Median follow-up duration (range) (years)	7.2 (0.3 – 16.5)		
Median age at initial presentation (range) (years)	0.3 (0.0 – 14.9)		
Type of Cardiomyopathy			
Hypertrophic cardiomyopathy (HCM)	19 (43.2%)		
Dilated cardiomyopathy (DCM)	20 (45.5%)		
Restrictive cardiomyopathy (RCM)	2 (4.5%)		
Left ventricular non-compaction (LVNC)	3 (6.8%)		
Arrhythmogenic right ventricular cardiomyopathy (ARVC)	0		

The Clinical Spectrum

Clinical Characteristics	No of patients (N= 44)		
NYHA Class 3 or above	3 (6.8%)		
History of arrhythmia	6 (13.6%)		
Atrial tachyarrhythmia	3 (6.8%)		
Ventricular tachyarrhythmia	3 (6.8%)		
ICD/ CRT-D implantation	4 (9.1%)		
Mechanical circulatory support	5 (11.4%)		
Active	3 (6.8%)		
Previous	2 (4.5%)		
Listing for heart transplantation	4 (9.1%)		
Received heart transplantation	2 (4.5%)		

The Genetic Spectrum

Genotypephenotype Correlations

	Gene Positive (<i>n</i> = 21)	Gene Negative (<i>n</i> = 18)	р
Male sex	13 (61.9%)	13 (72.2%)	0.73
Age at initial presentation (years)	2.1 ±4.2	2.9 ±4.2	0.53
Type of Cardiomyopathy	12 HCM 6 DCM 0 RCM 3 LVNC	6 HCM 10 DCM 2 RCM 0 LVNC	0.36
Syndromic/ extracardiac manifestations	11 (52.4%)	1 (5.6%)	0.002
NYHA class 3 or above	0	2 (11.1%)	0.21
History of Arrhythmia	1 (4.8%)	4 (22.2%)	0.16
ICD/ CRT-D implanted	1 (4.8%)	3 (16.7%)	0.32
Indicated for Device	1 (4.8%)	3 (16.7%)	0.32
Indicated for HTx	1 (4.8%)	3 (16.7%)	0.32

Disease-causing variants identified in <u>QMH Paediatric Cardiomyopathy Cohort</u>

Diagnostic Yield was 54%

Genetic Variants Associated with Paediatric Cardiomyopathy in Hong Kong

Cardiomyopathy	Core Genes*	Estimates of Genetic Testing Diagnostic Yield	ACMG Secondary Findings Gene List	Metabolic Causes of Cardiomyopathty	Examples of Genetic Syndromes
НСМ	MYH7, MYBPC3, TNNT2, TNNC1, TNN13, TPM1, MYL2, MYL3, ACTC1, ACTN2, CSRP3, PLN, TTR, PRKAG2, LAMP2, CLA	30%-60%	MYBPC3, MYH7, TNNT2, TNNI3, TPM1, MYL3, ACTC1, PRKAG2, GLA, MYL2, LMNA	GAA (Pompe); Mitochondrial disease genes	RASopathies (eg, Noonan syndrome, others); Friedreich ataxia
DCM	TTN, ¹ LMNA, MYH7, TNNT2, BAG3, RBM20, TNNC1, TNNI3, TPM1, SCN5A, PLN. For testing, all HCM and ARVC genes are recompreseded to be included.	10%-40%		Mitochondrial disease genes	Muscular dystrophies; Alström syndrome
ARVC	DES, DSC2, DSG2, DSG2, DSP, JUP, LMNA, PKP2, PLN, RYR2, SCN5A, TMEM43, TTN ¹ ; consider full DCM panel	10%-50%	PKP2, DSP, DSC2, TMEM43, DSG2, RYR2 SCN5A		Naxos syndrome; Carvajal syndrome
RCM	Consider HCM or DCM gene	10%-60%			
LVNC	Use the gene panel for the cardiomyopathy identified in association with the LVNC phenotype	Unknown		Mitochondrial disease genes, including <i>TAZ</i> in Barth syndrome	1p36 deletion syndrome; RASopathies

Table 3. Selected Genes in Association With Cardiomyopathy

Rare or novel genetic variants that are not included in existing gene panels were identified

Recommended Gene Selection according to HFSA 2018 guideline

Skeletal Muscle Loss of ambulation, upper limb function, respiratory failure Heart Cardiomyopathy

Presence of syndromic/ extracardiac manifestations were associated with positive genetic findings

Take Home Messages

ğ

Genetic testing is recommended for paediatric patients with cardiomyopathy

Although gene panels are still the mainstay of genetic testing , whole exome sequence is powerful to identify rare or novel variants in special circumstances

Patients with syndromic/ extracardiac manifestations are more likely to have an identified genetic variant

References

- Hershberger, Ray E., et al. "Genetic Evaluation of Cardiomyopathy: a Clinical Practice Resource of the American College of Medical Genetics and Genomics (ACMG)." *Genetics in Medicine*, vol. 20, no. 9, 2018, pp. 899–909.
- Wilkinson, James D., et al. "The Pediatric Cardiomyopathy Registry and Heart Failure: Key Results from the First 15 Years." *Heart Failure Clinics*, vol. 6, no. 4, 2010, pp. 401–413.

Thank You

Dr. Julia Shi Resident Department of Paediatric Cardiology Queen Mary Hospital Hong Kong SAR Email: sz589@ha.org.hk